Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation

نویسندگان

  • Francis Ribaud
  • Stéphane Vento
  • FRANCIS RIBAUD
  • S. VENTO
چکیده

We show that the initial value problem associated to the dispersive generalized Benjamin-Ono-Zakharov-Kuznetsov equation ut −D α xux + uxyy = uux, (t, x, y) ∈ R , 1 ≤ α ≤ 2, is locally well-posed in the spaces Es, s > 2 α − 3 4 , endowed with the norm ‖f‖Es = ‖〈|ξ| α + μ〉f̂‖L2(R2). As a consequence, we get the global wellposedness in the energy space E1/2 as soon as α > 8 5 . The proof is based on the approach of the short time Bourgain spaces developed by Ionescu, Kenig and Tataru [9] combined with new Strichartz estimates and a modified energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solitons And Periodic Solutions To The Generalized Zakharov-Kuznetsov Benjamin-Bona-Mahoney Equation

This paper studies the generalized version of theZakharov-Kuznetsov Benjamin-Bona-Mahoney equation. The functionalvariable method as well as the simplest equation method areapplied to obtain solitons and singular periodic solutions to theequation. There are several constraint conditions that arenaturally revealed in order for these specialized type ofsolutions to exist. The results of this pape...

متن کامل

Well-posedness in H for the (generalized) Benjamin-Ono equation on the circle

We prove the local well posedness of the Benjamin-Ono equation and the generalized Benjamin-Ono equation in H(T). This leads to a global wellposedness result in H(T) for the Benjamin-Ono equation.

متن کامل

Well-posedness results for the 3D Zakharov-Kuznetsov equation

We prove the local well-posedness of the three-dimensional Zakharov-Kuznetsov equation ∂tu+∆∂xu+u∂xu = 0 in the Sobolev spaces Hs(R3), s > 1, as well as in the Besov space B 2 (R 3). The proof is based on a sharp maximal function estimate in time-weighted spaces.

متن کامل

Well-posedness for the 2d Modified Zakharov-kuznetsov Equation

We prove that the initial value problem for the two-dimensional modified ZakharovKuznetsov equation is locally well-posed for data in H(R), s > 3/4. Even though the critical space for this equation is L(R) we prove that well-posedness is not possible in such space. Global well-posedness and a sharp maximal function estimate are also established.

متن کامل

Global Well-posedness of the Benjamin–ono Equation in Low-regularity Spaces

whereH is the Hilbert transform operator defined (on the spaces C(R : H), σ ∈ R) by the Fourier multiplier −i sgn(ξ). The Benjamin–Ono equation is a model for one-dimensional long waves in deep stratified fluids ([1] and [16]) and is completely integrable. The initial-value problem for this equation has been studied extensively for data in the Sobolev spaces H r (R), σ ≥ 0. It is known that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017